Microemulsions as a Drug Delivery System

Pion Favicon
Tal Shechter
Mar 7, 2017
min read
Microemulsions as a Drug Delivery System

Homogenization, also known as particle size reduction, is a technique that is gaining popularity in numerous industries, including pharmaceutical, cosmetic, and food. In the pharmaceutical industry, where production of drugs, antibiotics, and other essential medications are paramount to the success of the industry, it is important to understand one important concept: microemulsions. To learn more about microemulsions – what they are, how they work, and how they are critical to the success of the pharmaceutical industry – continue reading.

Microemulsions are defined as clear, thermodynamically stable, liquid mixtures of oil, water, and a surfactant – a compound that lowers surface tension. While the aqueous phase of a microemulsion may contain salts or other ingredients, the oil phase is often a mixture of olefins and hydrocarbons. Microemulsions form upon mixing of the components, and do not require the high shear that is often necessary in the formulation of typical emulsions.

Microemulsions have a number of important uses, including (but not limited to) the following applications:

  • Water-in-oil microemulsions for dry cleaning processes
  • Floor polishers and cleaners
  • Personal care products such as creams and lotions
  • Pesticide formulations
  • Drugs

Microemulsions also have other applications, including the creation of polymers. During this process, the transport of free radicals, monomers, co-surfactants, inhibitors, and other species occurs across the aqueous and organic phases of a system.

In the world of drug delivery, self-microemulsifying drug delivery systems, which can be described as isotropic solutions of oils and surfactants that form oil in water microemulsions when they are introduced into an aqueous medium, can improve a number of processes. For example, when presented as capsules, these drug delivery systems can improve the absorption of active ingredients within the body. In addition, with active ingredients that are not water soluble, microemulsions can help resolve that issue, making drugs, antibiotics, and other products created by the drug industry more bioavailable to the end consumer.

Pion's BEE brand offers a number of homogenization equipment that can help with the formation of microemulsions. Our laboratory homogenizers, including the Nano DeBEE, Mini DeBEE, and Micro DeBEE, are well suited for this application, as well as other applications within the research and development community. Other features and benefits of our laboratory homogenizers include:

  • Maximum operating pressure of up to 45,000 psi
  • Maximum capacity of up to 400 mL/min
  • Ability to create emulsions, dispersions, and microemulsions
  • Capabilities for cell rupture and liposome work

To learn more about what Pion has to offer, please contact us today.

Prev Blog
Next Blog